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Abstncl. We study the dimensions (mean-square radius of gyration and mean span) of 
self-avoiding polygons an the simple cubic lattice with fined knot type. The approach used 
is a Monte Carlo algorithm which is a combination of the UFACF algorithm and the pivot 
algorithm, IO that the polygons are studied in the grand canonical ensemble, hut the 
autocorrelation time is not 100 large. We show that, although the dimensions of polygons 
are sensitive t o  knot type, the critical exponent ( Y )  and the leading amplitude are indepen- 
dent of the knot type of the polygon. The  knot type influences the confluent correction to 
scaling term and hence the rate of approach to the limiting behaviour. 

1. Introduction 

Linear polymers in dilute solution can be highly self-entangled and these entanglements 
can influence crystallization behaviour (de  Gennes 1984). If a ring closure reaction 
occurs the entanglement can be trapped as a knot in the resulting ring polymer, and 
some information about the entanglement complexity can be obtained from a study 
of the distribution of knots in the ring polymer. I n  addition, the presence of knots in 
closed circular DNA can given information about the mechanism of action of enzymes 
acting on the DNA molecule (Wasserman er a /  1985, Wasserman and Cozzarelli 1986, 
Sumners 1987, 1990). 

Ring polymers can be  modelled as self-avoiding polygons on a (three-dimensional) 
lattice, and the presence of knots in these (and related) models has been studied using 
Monte Carlo techniques by a number of workers (Vologodskii et a /  1974, Frank- 
Kamenetskii e/  n/  1975, Michels and Wiegel 1984, 1986, Janse van Rensburg and 
Whittington 1990). Rather little is known rigorously, but it has been shown that 
sufficiently long polygons are knotted with probability one (Sumners and Whittingon 
1988, Pippenger 1989). The influence of knots on the dimensions of polygons has not 
received much attention, though this seems important in understanding the separation 
of DNA molecules with different knot types by pulsed gel electrophoresis techniques. 

We examine this problem here using a Metropolis (Metropolis er a /  1953) style 
Monte Carlo approach involving sampling on a realization of a Markov chain. We 
use an algorithm which is a combination of the RFACF and pivot algorithms. The BFACF 

algorithm consists of local moves which can change the length of the polygon but not 
the knot type. (In fact i t  can be shown that the ergodic classes are just the knot types, 
so that the algorithm samples polygons with fixed knot type and every such polygon 
can be obtained in the sample.) However, the algorithm bas the disadvantage that it 
has very long autocorrelation times, which makes it unsuitable for a Monte Carlo study 
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of very long polygons. To remedy this situation, we use an algorithm which is a 
combination of BFACF local moves and  large scale pivot moves. This introduces a new 
problem since a pivot move can change the knot type of the polygon. After each 
successful pivot move we compute the Alexander polynomial (Frank-Kamenetskii et 
a1 1975, Michels and Wiegel 1984, 1986, Burde and Zieschang 1985) of the polygon, 
and reject the move if the Alexander polynomial changes. (Of course, this is not a 
complete solution to the difficulty since distinct knots can have the same Alexander 
polynomial. For instance the knot IO,,, has the same Alexander polynomial as the 
knot 5 , ,  and the knot 820 has the same Alexander polynomial as the knot 3 , 3 , .  However, 
the computation of other knot invariants would be prohibitively time consuming and 
we d o  not believe that significant errors are introduced by this approximation.) 

Using this algorithm we generate samples of polygons with some simple knot types, 
and estimate their mean-square radii of gyration and mean span as a function of the 
number of edges in the polygon. From these results we estimate the corresponding 
critical exponents and amplitudes. 

E J Janse van Rensburg and  S G Wittington 

2. The BFACF algorithm and knotted polygons 

An unrooted self-avoiding polygon, or polygon, in any lattice, is a sequence of lattice 
sites wo. w , ,  w 2 , .  . . .  w., and associated edges (w?,  w,,,) such that wo= w,,, and U, and 
w,+, are nearest neighbours in the lattice, and w , ,  w 2 , .  . . .  w. are all distinct. If wo and 
wn are not the same, then we have a selfavoiding walk. Let Sd be  the d-dimensional 
hypercubic lattice and let {e , } := ,  be the set of orthogonal unit vectors in F’. The BFACF 

algorithm is a local stochastic process which operates on paths (any sequence of edges) 
in the hypercubic lattice. It generates statistical ensembles of paths with a Boltzmann 
distribution (Berg and Foester 1981). The algorithm was first applied to ‘bosonic’ walks 
(Brownian walks) and ’fermionic’ walks (Brownian walks without ‘spikes’) by Berg 
and Foester (1981), before it was applied to self-avoiding walks by Aragao de Carvalho 
er a1 (1983) and Aragao d e  Carvalho and Caracciolo (1983). 

Let P be  the set of all polygons in Sd. Let w E P. Then the RFACF algorithm is 
defined in the following manner: pick an edge (U,,  U , + , )  of the current polygon with 
uniform probability. Pick a unit vector e, perpendicular to (U,, w,,,). Move the chosen 
edge one lattice space along e, ,  inserting two new edges at its endpoints to keep the 
polygon intact. Lastly, erase any double edges (spikes) which may result from this 
process. A little reflection indicates that these operations result in one of the three 
moves illustrated in figure 1 ,  with possible changes in the length of the polygon of 1 2  
or  0. Let the new configuration be U. Accept v with probability p ( w +  v ) = , y ( u ) Q ( p 2 ) ,  
where x is an  indicator which is 1 if v is a polygon, and 0 otherwise, and Q(p’) = 1 
if the length change is 0 or  -2, and otherwise Q ( p L )  = p’. 

... ....- ....... 

..... . 

.....- .... .. -.. 

-.. r 
LI 

, -..... A -  
1, ....... .____... .- - 
Figure I .  The two elemenlary UI‘ACF moveS. 
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It is easy to check that this Metropolis implementation (Metropolis el a1 1953) of 
the BFACF algorithm is reversible. In  three dimensions the ergodicity classes of the 
algorithm are the knot-types of the polygons (Janse van Rensburg and Whittington 
1991). The BFACF algorithm for unrooted polygons realizes a Markov chain with the 
invariant probability distribution 

q ( w )  = z(p)-'jwlpl"l ( 2 . 1 )  

where w E YC, the set of all polygons of a given knot-type. IwI is the number of edges 
in w and p is an adjustable parameter. The partition function of the ensemble of 
polygons generated by the algorithm is 

where the set 3% is determined by the initial polygon in the Markov chain. 
The basic elementary transition is described by a transition probability matrix 

P= { p ( o  + U)} = (pa,,} which has the following properties in its ergodic classes: (i) For 
each w, U E  YC there exists an m 0 such that the m-step transition probability from w 

to U is positive. (This is obviously true in any given ergodic class.) (ii) For each polygon 
w E YC, ~ ~ p ~ . ,  = 71,. We can easily check this with our choice of transition prob- 
abilities. Therefore, i t  can be shown that 7iw is the unique limit distribution of the 
Markov chain with state space Y l  and transition probability matrix P (Kemeny and 
Snell 1976). Let the observed states of a realization of this Markov chain be represented 
by X.. Then the sequence of states {X,} is in general correlated. An observable 
A, = A ( X , )  is a stationary stochastic process with mean 

and unnormalized autocorrelation function 

CAA(S) =(AA+y)- (A,)2.  (2.4)  

The normalized autocorrelation is defined by pA,,(f)  = CAA(f)/CAA(0). Once the 
Markov chain is in equilibrium, we define the infegrared aufocorrelafion rime T,", by 

c2 

~i,,r(A)=t 1 paa(t). (2.5) 
I = - _  

The variance in the sample mean of the observable A, over N observations is asymptoti- 
cally 

In other words, the effective number of 'independent' observations is N/27,,, ,(A). The 
integrated autocorrelation time controls the statistical error in  our measurement of the 
sample mean of A,. 

In  general, the calculation of the integrated autocorrelation time T,", over a finite 
set of data can be performed in  the manner suggested by Madras and Sokal (1988). 
A window A (  f ) ,  which has A( f )  = 1 if I f /  < T and zero otherwise, is chosen, and equation 
(2 .5 )  is approximated by 

N 

*,nt=i 1 paa(r)A(f). (2.7) 
,= -N  
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In this equation we exclude contributions to the autocorrelation time which consist 
mostly of noise. We have a sequence of 2 N + 1 measurements and, for this approxima- 
tion to be good, we must have O<< T<< N. For details, see Madras and Sokal (1988). 

E J Janse van Rensburg and S G Wit t ington 

3. Implementation 

3.1. A biased version o f t h e  BFACF algorithm 

I n  this paper we are mainly interested in the size of polygons of a fixed knot type. 
This can be investigated by studying the mean square radius of gyration and the mean 
span of a representative sample of polygons. We define the square radius of gyration 
of a polygon w by 

r * ( w )  =- 1 ( ( ~ ( o ~ ) - X ( o ) ) ' + (  Y ( o , ) -  ~ ( o ) ) * + ( Z ( w , ) - ~ ( w ) ) * )  (3.1) 

where X ( x ) ,  Y(x) and Z ( x )  are the first, second and third components of the vertex 
x, and X ( w ) ,  Y ( w )  and z ( w )  are the components of the centre of mass of the polygon 
o. The span of a polygon is defined by 

s ( w )  =f(max I X ( o , )  -X(w,)l+max I Y ( w , )  - Y(wi)l+max IZ (w, )  - Z ( q ) I ) .  (3.2) 

The mean square radius of gyration and the mean span are measured in terms of a 
single length scale in the problem. We therefore assume that for polygons of knot-type 
x 

1 1 1 - 1  

n I = "  

I J 

( r2)  C,n'". (3.3) 

( s )  = "x. (3.4) 

and 

The asymptotic behaviour can therefore be characterized by studying the quantities 
vJi and C, and 0,. 

This task requires the sampling of polygons of sufficient length, so that the scaling 
of the quantities in equations (3.3) and (3.4) can be studied effectively. The partition 
function of polygons generated by the BFACF algorithm as described in the previous 
section can be written as 

Z ( P ) =  1 n p . . ( W P "  (3.5) 
a=" 

where ~ ~ ( 3 % )  is the number of polygons of the knot-type YL and with n edges. It is 
now well established that 

1 p,,(YL) = n"-?p" (3.6) 

where p is a growth-constant and a is an exponent with value close to 0.2 (Le Guillou 
and Zinn-Justin 1980, 1989), if the polygons are not rooted. I f  we substitute equation 
(3.6) into (2.1), then we see that the BFACF algorithm, when applied to polygons, will 
produce small polygons most of the time. This is a drawback for the application we 
have in mind in this paper and, in our implementation, we bias the algorithm towards 

,'Y 
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longer polygons. The simplest way of doing this is to make the parameter p dependent 
on n. We choose the following dependence: 

i f  n s n,;, 

i f  n,;, < n < nmnx 
if n z n , , , .  

(3.7) 

We can choose the values of the numbers pi such that most of the polygons generated 
by the aigoriihm are between the  limits n,?, and n,,,. In  our applications we chose 
p, =0.213 475, which is close to the critical value which is believed to be 0.213 496 
(Guttmann 1989). The value of po was l.OSp, and we took pz to be equal to 0.95P,.  
This choice for p preserves reversibility and, while some regions of phase space are 
now less likely to be visited, most of the computer time is spent in regions of phase 
space which are of interest to us. The Markov chain is still ergodic and  has the limit 
distribution [if we assume that p , [ X )  = nC*-'&j 

r r p ( W )  =Z(p)-'lul+ 

(P0ILJ)I" if Iwl s nmin 

(popx)"" '"(p I klf )I"'-"-,. if n,i,, IwI  < nmaX 

(p "~La) " - , , , (p l r ,~ ) " - " "~ " - , "  ( p  2!+x iflola n,,,. (3.8) 

The partition function Z ( p )  is given by Z(p)=E.,  7 ip (w) .  We observe that polygons 
with the same lengths have the same weight in equation (3.8). For every set of polygons 
of fixed length, the algorithm will generate a representative sample with a uniform 
distribution. We can therefore use this biased algorithm to study equations (3.3) 
a n d  (3.4). 

3.2. Numerical details 

The  algorithm was programmed in C and the numerical work performed on an Apollo 
DN10000. The  most natural storage of a discrete object in computer memory is as an 
unordered list of vertices. The ith address in the list contains in its first three elements 
the coordinates of the vertex carrying the label i in the polygon. The last two elements 
contain pointers which point towards the nearest neighbour vertices of i in the list. 

This storage of the polygon as an unordered list makes the implementation of the 
BFACF algorithm very effective. We note that BFACF moves of type I I  correspond to a 
change in the coordinates of only one vertex in the list. Moves of type I are implemented 
by either adding vertices to or  deleting vertices from the list. If the list contains n 
vertices, then the addition of two vertices to this list in a BFACF move of type I is 
performed by adding the new vertices in the ( n  + 1)th and ( n  + 21th addresses. Removal 
of two vertices from the list is accomplished by moving the last two vertices in the list 
to the  newly opened addresses. I n  this way, the number of operations per attempted 
BFACF move is 0(1), independent of the  length of the polygon. At each step of the 
calculation we check that the polygon is self-avoiding using hash-coding (Knuth 1973). 
For a more detailed explanation of the hash-table, especially with respect to the 
simulation of walks, see the paper by Madras and  Sokai (1488). 

Unfortunately, the BFACF algorithm suHers from a very long autocorrelation time. 
The  exponential autocorrelation time of this algorithm (which controls the relaxation 
of the Markov chain from an initial configuration to equilibrium) is infinite (Sokal 
and  Thomas 1988). The integrated autocorrelation time, which controls the statistical 
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error in measured quantities, is also very long. This is unfortunate for the implementa- 
tion here, since this algorithm is the only one known to be ergodic for a polygon of 
fixed knot type. The situation can be improved, to some extent, by the introduction 
of extra Monte Carlo moves in the BFACF algorithm. These moves are borrowed from 
the pivot algorithm (Carracciolo et a /  19901, and have been shown to reduce the 
autocorrelation time of the slowest modes in  the BFACF algorithm. In the case of 
polygons, we can use additional moves from the pivot algorithm for polygons (Dubins 
ef a l  1988, Madras et a /  1990, Janse van Rensburg et a /  1990), which has been well 
studied in the past few years. 

We perform a pivot on the polygon in the following way. Choose two vertices on 
the polygon with uniform probability. These vertices ( I ,  and f,, say) seperate the 
polygon into two disjoint segments; let the shorter of the two segments by U , .  The 
elementary transitions of the pivot algorithm are operations of elements of the symmetry 
group of the lattice (the octahedral group), on w , ,  such that t l  and f, are left unchanged, 
or are reflected or rotated into each other. The possible transitions depend on the 
relative positions of 1, and t 2 .  It is always possible to perform an inversion through 
the centre of mass of 1, and f 2 ,  so that there is at least one transition which can be 
attempted for all locations of the pivots. We implemented the pivot algorithm with 
inversions, 90" rotations around lattice axis, and reflections through planes which 
contain one lattice axis, and are inclined at 45" to the other two lattice axes, as well 
as through planes which contain two of the three lattice axes. With these choices of 
elementary transitions the pivot algorithm is ergodic for polygons of fixed length in 
the cubic lattice (Madras et a/ 1990). If we add these transitions from the pivot algorithm 
for polygons to the BFACF algorithm, then the algorithm is ergodic in the set of all 
polygons in three dimensions. The knot types of the polygons are now connected by 
transitions from the pivot algorithm. The philosophy of the implementation of the 
BFACF algorithm with pivots is to attempt a pivot transition after every m attempted 
BFACF move. (When we study polygons with fixed knot type, we have to check that 
the knot type does not change under these moves. We discuss this later.) 

The fact that the implementation of the pivot algorithm here is ergodic for polygons 
of fixed length is useful to us. It is now possible to test the BFACF algorithm by using 
it to calculate the mean square radius of gyration of polygons of fixed size. We do  this 
by running the algorithm, and calculating the square radius of gyration very time that 
the current polygon has the desired length. The results obtained can be compared with 
results from the pivot algorithm at fixed n. A run of the BFAcF/pivot algorithm of 
625 000 000 attempted BFACF moves, and one attempted pivot every 125 attempted 
BFACF moves, gives for the mean square radius of gyration (r'(n)) of polygons with 
n edges: 

E J Janse van Rensburg and S G Whitfington 

( r 2 (  100)) = 22.58 (r'(200)) = 51.06. (3.9) 

If we run the pivot algorithm alone at fixed n, then runs of 200 000 iterations at n = 100 
and 100 000 at n = 200 gives 

(r'(l00)) = 22.66k0.22 (r'(200)) = 51.69i0 .72 .  (3.10) 

where the error bars are 95% confidence intervals. 
The most effective implementation of the BFACF/pivot algorithm occurs when the 

ratio of attempted BFACF moves to attempted pivot moves gives the optimum conditions 
for estimating variables that we are measuring by using the algorithm. A suitable 
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measure for the effectiveness of Monte Carlo simualtions was introduced by 
Hammersley and Handscomb (1967). The relative eflciencj' of a Monte Carlo method 
with respect to the observable <, ,y(<), is defined by 

~ ( 5 )  = Tu2 (3.11) 

where 7 is the CPU time taken by the algorithm, and U is the variance in the mean of 
the quantity L. In applying equation (3.11) we shall express U as a fraction of the 
estimate of the observable <. An algorithm which is efficient in calculating an estimate 
of a given quantity will have a lower value of ,y than an algorithm which is less efficient 
at estimating the quantity. 

We performed a series of runs to determine the optimum ratio of BFACF moves to 
pivots. The results are listed in table 1. In the first column we list the number of 
iterations (we take one iteration to be 5000 attempted BFACF moves). The second 
column lists the number of attempted BFACF moves for every attempted pivot. The 
third column lists the CPU time (in seconds) of the run. We measured x with respect 
to three observables: the mean length of the polygons, the mean square radius of 
gyration of the polygons, and the exponent U calculated from the data. Over all these 
runs the mean length of the polygons were 246 * 11, the mean square radius of gyration 
was 67.9*4.2, and the exponent U was calculated to be 0.590*0.004. The relative 
efficiencies in  calculating these numbers are listed in the next three columns of table 
1. There is a clear minimum when the ratio of attempted BFACF moves to pivots is 
near 64. 

Table 1. The relative emciency of the RFAcF/pivot algorithm for polygons measured will1 
respect 10 / w l .  ( r 2 )  and Y. The knot-type of the polygon was not  examined after a successful 
pivot.  

Iterations 

100 000 
50 000 
50 000 
50 000 
50 000 
50 000 
30 000 

RFACF/piYOt CPU x(lw1) x ( r * )  

8192 57 400 130 I89 
2048 29 600 I04 I56 

512 30 000 83 105 
128 34 900 64 87 
64 39 600 45 68 
32 49 100 56 85 

8 70 300 I23 186 

1246 
1186 
565 
583 
391 
558 

1374 

In this paper we apply the BFACF/pivOt algorithm to polygons of fixed knot type. 
Since the pivot algorithm may change the knot-type of a polygon, we must examine 
the polygon after every successful pivot to make sure that it  is still the desired knot 
type. We d o  this by calculating the Alexander polynomial of the polygon (see e.g. 
Vologodskii et ol 1974, Frank-Kamenetskii er a /  1975, Michels and Wiegel 1984, 1986, 
Janse van Rensburg and Whittington 1990) and reject the move i f  the Alexander 
polynomial changes. Including this calculation makes it more expensive to perform 
pivots so that we expect a change in the relative efficiency of the algorithm, which we 
illustrate in table 2. There is a broad minimum in this table where the ratio BFAcF/pivot 
is between 64 and 512. As our optimal choice, we pick this ratio to be 125 in our 
subsequent applications. 
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Table 2. The relative efficiency ofthe ii~:ACF/Pivot algorithm far polygons measured with 
respect to IwI, (r')  and v. In this case we check the knot-type of the polygon after every 
successful pivot. 

100000 8192 57400 130 I89 1246 
50000 2048 30400 107 160 1218 

632 
50 000 128 50 300 92 I26 841 
50 000 64 70 600 80 121 706 
50 000 32 110900 I26 192 1260 
30 000 8 218900 383 579 4276 

..- 512 33 6DG 9: I II 
I n  ?,fin 
,U "Y" 

4. Numerical results 

4.1. The exponent U ,  

We expect one length scale in this problem (for each fixed knot type). This implies 
that there is a single exponent uw (which may depend on the knot type) which 
characterizes the divergence of all metric quantities in the model. We defined two such 
quantities, the mean square radius of gyration and the mean span, in equations (3.3) 
and (3.4). In this section we examine the exponent U,, for polygons of fixed knot type; 
we are interested in the proposition that the value of this exponent may depend on 
the knot type. 

We simulated polygons for 2 x 5 x l o5  iterations, where one iteration is 2500 
attempted BFACF transitions with an attempted pivot every 125 attempted BFACF moves. 
In total, the number of BFACF moves attempted was 6 x 2 5  x lo8, and the total number 
of attempted pivots was 5 x IO6. The mean square radius of gyration, and the mean 
span were calculated and recorded after every iteration. We calculated autocorrelation 
times as set out in section 2 and used equation (2.6) to estimate error bars on the 
quantities calculated in these runs. The value of n,,, in equation (3 .7)  was set to 150, 
and nmrr was taken to be 800 for the unknot and the trefoil, and 900 for the figure 
eight, the double trefoil and the knot 6, (see for example Burde and Zieschang 1985). 

The expected dependence of the mean square radius of gyration and the mean 
span on the length of the polygons as defined in equations (3.3) and (3.4) is only 
asymptotic. In general, we expect corrections to scaling in these expressions (Le Guillou 
and Zinn-Justin 1980, 1989). The corrections to scaling are usually dominated by a 
confluent correction, so we expect that the mean square radius of gyration data can 
be adequately described by 

(4.1) 

The exponent P takes care of confluent corrections to scaling and its value is close to 
0.5 (Le Guillou and Zinn-Justin 1980, 1989). The term which contains an inverse power 
of n is the usual analytic correction. The same behaviour is expected for the mean 
span. We expect that 

(4.2) 

If we take logarithms on both sides of equations (4.1) and (4.2), and expand the 
logarithm, then we find that we can determine the exponent from a three-parameter 

( r 2 )  = ( C ,  + b!,,n-'+ c!,,n-')n'"". 

(s) = (D.K+ u>{n-.'+ ukn-')n".f l .  
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linear fit where we take the possible confluent corrections to scaling into account. We 
find 

log(r')=log C N +  b , { n - ' + 2 ~ , ~  log n 

log(s)=log DX+u,(n-"+ U,, log n. 

(4.3) 

(4.4) 

We examined data for five different knots: the unknot ( O ) ,  the trefoil (T), the 
double trefoil (D), the figure eight knot (F) and the knot 6, ( S ) .  Our  best estimates 
for from the mean square radius of gyration data are 

uo = 0.596i0.021 

uT=0.599*0.086 

U , , =  0.641 fO.078 

uF=0.638it0.92 

us = 0.64+0.11 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

where the error bars are 66% confidence intervals. We see that, within the confidence 
interval, all these numbers include the exponent of the unknotted polygon (4.5). The 
results from the mean span data give better estimates for u,, (with smaller error bars). 
We find 

uo=0.5750*0.0077 (4.10) 

uT=0.589f0.034 (4.11) 

uD = 0.607 + 0.037 (4.12) 

uF = 0.615 *0.031 (4.13) 

us = 0.597 f 0.044. (4.14) 

All these results include the 'exact' value of U, expected to be near 0.588. The exponent 
seems to be independent of knot type. It may be that most knots are quite local objects 
in the polygon so that, in the language of the renormalization group, we can think of 
these knots being 'renormalized' away, so that they will have no effect on the exponents 
of the polygon. 

4.2. f i e  amplirude of knotted polygons 

A knot is a (topological) constraint on the polygon. The results in the previous section 
indicate that this constraint (unlike the self-avoiding condition) does not have an effect 
on the critical exponent U of the polygon. If 'universality' is preserved in this way, 
then the next level where the knot can make its presence felt is in the amplitudes, that 
is, in the values of the numbers Cy and D,x in equations (3.3) and (3.4). 

To study this possibility, we first divide equations (4.3) and (4.4) by n'" and n" 
(we assume that U is now independent of the knot type) to find that 

( r2 ) /  n2" = C, + b,,n-' + c;,,n- ' (4.15) 

( s ) / n  " = D,( + + ~ , ~ n - ' .  (4.16) 

To what extent are C, and D.# dependent on X? To answer this question, we first 
consider a few plots. In figure 2(a)  we plot ( r ' ) /n2' '  against n-' for the unknot (0), 
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0 0 05 0 10 O I5  
“-A 

I I 

I I I 
0 0.05 0.10 0.15 

0 - b  

Figure 2. ( a )  ( r 2 ) / n 2 ”  against for the unknott (01, the trefoil (T) and Ihe double trefoil 
(D). ( b )  ( r 2 ) / n ”  against n? for the unknot (01, the figure eight knot (F) and the knot 
6 )  (S i .  

the trefoil ( T )  and the double trefoil (D). Figure 2(b)  is a similar plot containing the 
data for the unknot (0).  the figure eight knot (F) and the knot 6, (SI. The spread in 
the data points at large n is due to fewer data points being taken in that regime (near 
and above n,,, in equation (3.7)). If we extrapolate the best straight lines throughout 
the data points in these two graphs, then the intercepts of each of these iines with the 
vertical axis are in each case near 0.10. independent of the knot type. Alternatively, we 
can plot the ratio ( r 2 ) o / ( r 2 ) x  against n-’. We do this in  figure 3 where we pick YC to 
he T, D and S .  If we extrapolate the curves to the verical axis, then we see that the 
intercept is in each case close to  1. We interpret this as evidence that C,, is independent 
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Figure 3. (r2)~, / (r2)r  against 
6, (SI. 

for X the trefoil (T), the double trefoil (D) and the knot 

of 3% (in equation (4.15)), if we assume that v and A have their field theory values. 
We note that we can determined C,  from equation (4.15) and  ou r  data via a three- 
parameter linear fit. If we d o  this with the data in figures 2 ( n )  and 2 ( b ) ,  then we find 
as  the best estimates for C, 

CO= 0.105 * 0.006 (4.17) 

CT= 0.099i0.019 

CD = 0.099 * 0.027 

(4.18) 

(4.19) 

CF= 0.102 + 0.019 (4.20) 

c,= 0.091 *o.n26. (4.21) 

We can examine the data for the mean span i n  the same way: A plot of ( s ) / n "  against 
n? is illustrated in figure 4 for each of the knot types. Again,  we note that an 
extrapolation of linear curves thgough these data sets will intercept the vertical axis 
near 0.75. We can also plot (.y)"/(.Y),, against n-' (figure 51, where we take X to be 
T, D and S. The best straight lines through these data points intercepts the vertical 
axis again near I ;  the mean span of the unknot is the same as that of any other knot 
in the scaling (large n )  limit. This we interpret as evidence that D ,  is not dependent 
on ,7f. A linear three-parameter fit to our  data and equation (4.16) gives 

D,,=0.753*0.015 (4.22) 

D ~ = o . ~ I  kn.056 (4.23) 

D,,  = 0.732 * 0.082 

D,. = 0.735 * 0.067 

Ds = 0.703 * 0.093. 

(4.24) 

(4.25) 

(4.26) 

These numbers are strong evidence that the amplitude of the mean square radius of 
gyration, and the mean span, are independerit of the knot type of the polygon. This is 
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Figure 4. ( $ ) I n '  against K' for the unknot (O), the trefoil (Ti, the figure eight knot (F), 
the double trefoil ID) and the knot 6, (S). 
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Figure 5. (s),>/(x)* against 
6, (SI. 

for 3( the trefoil IT), the double trefoil ( D i  and the knot 

a remarkable conclusion. The knot type only affects corrections to scaling, that is, the 
rate of approach to the limiting behaviour. 

5. Discussion 

In this paper we have used a Monte Carlo algorithm which is a combination of the 
BFACF algorithm and  the pivot algorithm to study the dimensions of polygons with 
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fixed knot type. The point of using the hybrid algorithm is that we want to generate 
polygons with a range of values of n in the sample'(hence the grand canonical BFACF 

algorithm), but we want to avoid the long correlation times (hence the use of pivots). 
The BFACF algorithm is particularly suitable to a study of fixed knot type polygons 
since it is known that the underlying Markov chain has the knot types as its ergodic 
classes. When we introduce the pivot moves, the Markov chain is then ergodic on the 
polygons so, to sample polygons with fixed knot type, it is necessary to compute a 

changes. 
We have used this hybrid scheme to examine several different types of knot on the 

simple cubic lattice. Our results suggest that the critical exponent ( U )  associated with 
the mean-square radius of gyration and with the span is independent of knot type and, 
moreover, the associated amplitudes are independent of knot type. We believe that 

knot types have different average dimensions but, as n +a, these differences manifest 
themselves only in the rate of approach to the asymptotic behaviour. It is important 
to notice that we are concerned with the situation in which the knot type is fixed and 
the number of edges in the polygon goes to infinity. If the knot type is not controlled 
then the probability that a polygon is knotted goes to unity as n + m and, for many 
measures of knot complexity, the complexity (of the knot) increases linearly in n 
(Soteros er al 1991). There are interesting questions about the dimensions of polygons 
whose knot complexity is increasing with n, but we do not address these here. 

L-n+ ;m.roAo-+ f-7 PIIP-., c , , c ~ o n o f , , l  -;.,a+ --.IP n-A -_;er+ +ha mn.,~ :f thn ;niislrinnt 
hll", . . I I Y , I Y . . L  ."I L".LJ 1 Y l l b 3 l l L . l  V 1 " V L  111""b YL." ,.,,*CL L . l L  .I."*C 2 ,  L I . C  I l . . . . . l l . . .  

!his is B significant and surprising res.!!. Of course, pa!ygons with fi.xed n and different 
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